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The local minima �inherent structures� of a system and their associated transition links give rise to a
network. Here we consider the topological and distance properties of such a network in the context of spin
glasses. We use steepest descent dynamics, determining for each disorder sample the transition links appearing
within a given barrier height. We find that differences between linked inherent structures are typically associ-
ated with local clusters of spins; we interpret this within a framework based on droplets in which the charac-
teristic “length scale” grows with the barrier height. We also consider the network connectivity and the degrees
of its nodes. Interestingly, for spin glasses based on random graphs, the degree distribution of the network of
inherent structures exhibits a nontrivial scale-free tail.
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I. INTRODUCTION

In typical complex systems, there is a huge number of
inherent structures �1� �local minima of energy in the con-
figuration space�, with no single one giving a good approxi-
mation to the equilibrium state. Indeed, it is necessary to
consider most if not all inherent structures and their basins to
reach a quantitative understanding of a model’s equilibrium
properties �2,3�. To include also the dynamics, it is necessary
to know how these basins are connected �linked� by saddles,
the �excitation� energies of which play an important role for
the associated transition rates �4–10�. The set of local
minima and their links define a network �11,12�; following
Doye �12�, we shall refer to it as the “Inherent Structure
Network” or “ISN.” Such a framework has been applied to
water �6�, atomic clusters �12�, and glasses �11�; all these
systems have a somewhat complex energy landscape but
none has quenched disorder.

In this work, we focus on the inherent structure network
�ISN� in the context of spin glasses �13� because they com-
bine quenched disorder and complex energy landscapes; in
addition, their landscapes are based on microscopic Hamil-
tonians rather than on an abstract random potential �14,15�.
Of particular interest are the network’s topology, how the
linked inherent structures differ, and the associated scaling
laws with the number N of spins. The case of one-
dimensional spin glasses is simplest and we shall use it to
motivate a framework based on droplets. Such a picture pre-
dicts that the degree of the nodes in the ISN follows a Gauss-
ian distribution with a mean growing linearly with N. These
properties are well borne out in the one-dimensional spin
glass, but when the spins lie on a random graph, fat tails
appear in the distribution of the degree, indicating instead a
scale-free behavior of the ISN.

The paper is organized as follows. The models are defined
in Sec. II, and we also present our methods and the observ-

ables of interest. In Sec. III we investigate in detail the case
of the one-dimensional spin glass. Then we present a frame-
work based on “droplets” and give its predictions �Sec. IV�;
these are expected to be valid when droplets are small and
“weakly interacting.” Finally, in Sec. V we cover the case of
spin glasses based on random graphs; there droplets are
strongly interacting and context sensitive. We conclude in
Sec. VI.

II. MODELS AND METHODS

A. Spin-glass models

We consider N Ising spins lying on the vertices of a con-
nected graph G where each vertex is connected to exactly k
others. To each edge ij of such a graph, we independently
assign a weight Jij according to a distribution symmetrized
about 0. These elements, i.e., the �random� edges and their
associated weights Jij, define the system’s “quenched disor-
der.” The energy landscape is defined from the space of spin
configurations via the Hamiltonian

H���i�� � − �
	ij


Jij�i� j , �1�

where the sum runs over all pairs of sites connected by an
edge of the graph and �i= ±1 is the Ising spin on site i. As in
Ref. �16� the weights Jij are generated from a Gaussian dis-
tribution with variance

var�Jij� =
J2

k
, �2�

where J is an energy scale set to 1 in the numerical work;
this scaling allows for an extensive thermodynamic limit for
all k, but in our case the landscape properties do not depend
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on this rescaling. The model has an obvious global Z�2� sym-
metry corresponding to flipping all the spins simultaneously.

We shall consider two classes for G. The first class is that
of a one-dimensional lattice with nearest neighbors only and
periodic boundary conditions �k=2�; the simplicity of this
structure allows for a relatively complete understanding of
the associated ISN. The second class corresponds to
4-regular random graphs where each spin is coupled to ex-
actly four other ones �17�; here a rather careful analysis is
needed to compensate for the rather small sizes accessible to
our numerical computations.

B. Inherent structures and their network

There are 2N possible configurations of the spins. A con-
figuration is an inherent structure �IS� if and only if it is a
local minimum of the energy, i.e., no single spin flip will
lower the energy. �Because the Jij are independent and iden-
tically distributed . variables with a continuous distribution,
generically the energy of an inherent structure is strictly
lower than that of its neighboring configurations.�

Each spin configuration can be mapped onto a unique
inherent structure using the following steepest descent pro-
cedure: a succession of spin flips is carried out but at each
step the spin chosen for flipping is that which lowers the
energy the most. The basin of attraction �hereafter simply
referred to as “basin”� of an inherent structure is, by defini-
tion, the set of all configurations mapped onto that structure
by this steepest descent procedure.

Configuration space can be thought of as forming a Bool-
ean hypercube: two configurations are connected by an edge
if they differ by a single spin flip. Let x and y be two con-
figurations mapped by steepest descent onto the inherent
structures X and Y, respectively: x→X and y→Y. Suppose
that x and y are connected by an edge �they differ by a single
spin flip� and that X�Y. In this case we say that the xy link
crosses the frontier between the basins of X and Y: it is a
frontier link.

Let xy be a frontier link and let x be more energetic than
y: H�x��H�y�. The link xy is a transition link if the follow-
ing condition is satisfied:

�H�x� − H�X�� � � or �H�x� − H�Y�� � � , �3�

where � is a control parameter. The situation is illustrated in
Fig. 1, both for this discrete space case and for the analogous
situation in a continuous space where the distinction between
x and y is not necessary. In this figure, the configuration
x—the more energetic vertex in a transition link—is the dis-
crete space analog of a transition state �saddle� in models
having a continuous configuration space �cf. �18��; the saddle
in the top part of Fig. 1 is denoted by S. There may be many
saddles between two neighboring basins, so one could think
of having either multiple or weighted links between inherent
structures. In the present paper we are not interested in these
multiple links, but only whether there exists at least one xy
between given IS, which fulfills Eq. �3�, in which case the
two IS are connected by a link. �In this respect we follow
Ref. �19�.�

The ISN is defined by its nodes �the inherent structures�
and its links �two nodes are linked if the corresponding in-

herent structures have basins connected by a transition link�.
It can be thought of as a directed network: by convention the
direction of an edge is from the more energetic to the less
energetic node. The topology of the ISN depends, of course,
on the choice of �. For ��J the ISN consists mostly of
isolated nodes �some nodes may nevertheless be connected
due to the random values of the Jij, which occasionally make
certain energy barriers small�. The number of links of the
ISN increases with � and a giant component—defined dis-
regarding the directionality of edges—is expected to set in
when � is sufficiently large.

C. Algorithmic methods

Given any realization of the graph and the weights Jij, we
exhaustively consider all configurations and determine via
the steepest descent algorithm the basin to which each be-
longs. This gives the complete map from the 2N configura-
tions to the set of inherent structures. �For computational
details, see Ref. �16�.� Then we determine the transition
states which allow us to introduce links between inherent
structures; this leads to the ISN. For all that follows, two
nodes of the network are connected by at most one link of
energy given by that of the lowest transition state between
the two considered inherent structures. To understand the sta-
tistical behavior at large N of such ISN, we repeat this con-
struction for many disorder samples and try to extract the
dependence on N.

The CPU time needed to execute this code for one in-
stance of 20, 25, and 30 spins is about 2 s, 100 s, and 4000 s,
respectively. It is evident that, in practice, N�30 turns out to
be a working limit for our programs. Moreover, the RAM
memory demand is considerable: at N=30 one needs 2 Gb.

III. ONE-DIMENSIONAL CASE

A. Inherent structures

On the one-dimensional lattice, a configuration can be
described either by the values of every spin or by the “bond”
quantities �iJi,i+1�i+1; these are positive for satisfied bonds
and negative for unsatisfied ones. In this last representation,
it is easy to give a necessary and sufficient condition for
having a local minimum of the energy: each unsatisfied bond

S

YX

Λ

X Y

x y

Λ

FIG. 1. Representation of an energy landscape and the associ-
ated special configurations. Horizontal axis: configuration space,
vertical axis: energy. X and Y are inherent structures, connected by
a saddle S �in the continuous case, top� or by a frontier link xy �in
the discrete case, bottom�.
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must be between two satisfied bonds, and its strength �Ji,i+1�
must be smaller than that of its neighbors.

Without loss of generality �at least if one neglects the
periodic boundary conditions of the lattice�, one can replace
all the Ji,i+1 by �Ji,i+1�. �This follows from the gauge invari-
ance of the Hamiltonian.� We are then led to an “energy
profile” representation where each bond has a height �Ji,i+1�
and a configuration is specified by specifying which bonds
are unsatisfied. In Fig. 2 we show such a representation
where unsatisfied bonds are shown as broken segments, and
the “height” of the bond is given on the vertical axis. Note
that in ferromagnets, such unsatisfied bonds are referred to as
kinks. It is straightforward to see that a configuration is a
local minimum if and only if its broken segments �if any�
appear only at the bottom of the profile. We shall call “el-
ementary droplet” the region of spins contained between two
successive minimum segments; a spin on a minimum seg-
ment belongs to the single elementary droplet it touches. It is
easy to see that all inherent structures correspond to simply
specifying the state of each elementary droplet; within the
gauge where all the Jij are positive, each elementary droplet
will have all of its spins in the +1 state or all in the −1 state.

For a given sample, let M be the number of segments that
are locally minimum in the energy profile. �For periodic
boundary conditions, this is also the number of elementary
droplets.� Then the number of inherent structures is 2M, a
well known result �20,21�. At large N, M is a Gaussian ran-
dom variable of mean N /3. This follows from the fact that
each segment is a local minimum with probability 1 /3. The
variance of M can also be calculated; the result is

var�M� = 2N/45. �4�

As a consequence the number of local minima NIS, which
gives the size of the ISN, is log-normally distributed for
large N �16� and

ln	NIS
 � 1

3
ln 2 +

1

45
�ln 2�2�N � 0.2417N . �5�

B. Transition links

Given two inherent structures X and Y, are they linked by
a transition state? This is a priori a difficult problem as there
are many possible configurations to consider. In Fig. 3 we
show how a given pair xy can be visualized within the en-

ergy profile picture in a case where Y is the ground state and
X has exactly two broken segments, X and Y differing by two
adjacent elementary droplets.

A better understanding of what links two inherent struc-
tures is achieved when one remembers a few simple facts.
First, the set of unsatisfied bonds determine the system’s en-
ergy: if E0 is the ground-state energy where all bonds are
satisfied, then a configuration’s energy is given by

H���i�� = E0 + 2�
i

�Ji,i+1� , �6�

where the sum runs over all unsatisfied bonds. Second, a
steepest-descent path corresponds to a specific sequence of
moves where at each step a single spin is flipped to lower the
energy. In such downhill changes, two alternative possibili-
ties arise. If the flipped spin belongs to two unsatisfied
bonds, then these both become satisfied, a phenomenon one
can refer to as “annihilation.” If on the contrary the flipped
spin is shared between one satisfied bond and one unsatisfied
one, then the two bonds exchange their �satisfied and unsat-
isfied� nature. In such a move, the energy must decrease; if
we think of marking broken segments on the energy profile,
then the markings have to go downhill during the steepest
descent. Note that when two neighboring unsatisfied bonds
can annihilate one another, annihilation is always preferred
to letting one of them go downhill.

In general, the linking of two inherent structures depends
on � /J and on the detailed values of the Ji,i+1; nevertheless
some useful general properties can be derived as follows.

�i� In the energy profile picture, consider a segment Si,i+1,
which is a local maximum. If the corresponding bond is sat-
isfied in both x and y belonging to the basin of X and Y,
respectively, then all downhill spin flips will maintain that
segment’s unbroken state, and thus both X and Y will have
that bond satisfied. Thinking of this in lattice space, let �i0

be
the spin that is flipped when going from x to y. Starting from
x and y, the steepest descent energy relaxation will produce
two trajectories of configurations, whose difference �referred
to as “damage” in the spin glass literature� will spread from
the initiation site �i0

. The corresponding “damage spreading”
�22� front going towards i will stop at i or before, and thus all

++ + +
. . . ..

− −
..

−−
.

FIG. 2. Energy profile representation of configurations for the
one-dimensional lattice. The dots stand for the lattice vertices, the
strength of a bond is given by its “height” on the vertical axis, and
the unsatisfied bonds are represented by broken segments. A par-
ticular spin configuration is indicated by the ± signs; for this con-
figuration the second and the sixth bond are unsatisfied.
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−+
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− −
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−−
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−x:

. .
− −+

. ..
− −

..
−−

.
−y:

FIG. 3. Energy profile representation of a transition state x, and
y obtained by flipping the indicated spin. Y here is the configuration
with all bonds satisfied, while X, shown in Fig. 2, differs from it by
a droplet consisting of two adjacent elementary droplets.
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the spins beyond the “barrier” Si,i+1 will be blind to this: the
final difference between X and Y will vanish beyond site i by
“causality.” In effect, information about the state of �i0

is
blocked by this barrier. This same blocking arises if the
maximum segment Si,i+1 is broken but both trajectories from
x and y flip the same spin on that segment. �Here we use the
fact that of the spins �i and �i+1, one is never flipped while
the other is flipped just once in the whole steepest descent;
indeed, after the first flip, the bond �i , i+1� is satisfied and
remains so thereafter.�

�ii� Clearly, all maximum segments either start unbroken
or go from broken to unbroken �and remain so� during the
steepest descent moves. The previous causality argument
then shows that the set of maximum segments that are af-
fected differently in the two trajectories from x and y cannot
have any gaps. Furthermore, since in X and Y the spins be-
longing to the maximum segments determine completely the
spins in the corresponding elementary droplets, we see that
the difference between X and Y must be due to the flipping of
an uninterrupted sequence of elementary droplets.

Given this last necessary condition for inherent structures
X and Y to be linked, one can also ask whether it is suffi-
cient. The answer is no: empirically, it is easy to find disor-
der samples �values of the Jij� for which no link will connect
X and Y even though they differ by a connected sequence of
elementary droplets. Indeed, having damage spread across a
series of elementary droplets requires conditions on the suc-
cessive Jij. For example, if J1,2�J2,3� ¯ �Jm−1,m, then the
damage spreading can propagate from site 1 to site m since it
does not encounter any obstacle in-between, but the prob-
ability that m random numbers form such a decreasing se-
quence is rather small: p�m��1/m ! �exp�−m ln m�. Given
these facts, one expects a probability of propagation that de-
creases at least as fast as exponentially with distance. This
suggests that the Hamming distances dH defined as the num-
ber of spins oriented differently in X’s and Y’s have a fast
decaying distribution. This is indeed what we see in our nu-
merical simulations, as illustrated in Fig. 4. In fact this fast
decay holds for all �, even �=�. �Note that distances be-
tween inherent structures have also previously been consid-
ered in the context of supercooled liquids in Ref. �23� and of
a one-dimensional Potts model in Ref. �24�.�

C. Degree properties of the ISN

Let us first discuss some of the topological properties of
the ISN. Consider first the case � /J fixed. We saw that the
differences �damage� between linked IS corresponded to a
connected cluster of spins formed by elementary droplets
and that the corresponding distribution of dH fell sharply. For
a given X, the number of such clusters is extensive �propor-
tional to N at large N� and clearly, when they are far away
from one another, they are independent. Thus we expect IS to
have O�N� links. In the inset of Fig. 5 we show our data for
the mean degree of inherent structures at � /J=2; the data
agree very well with the linear scaling in N. Using the near
independence of these clusters, we can also appeal to the
central limit theorem. One then expects q, the degree of an
inherent structure, to have a Gaussian distribution at large N.
We have corroborated this property also, as illustrated in the
main part of Fig. 5. Visible deviations from the Gaussian
distribution occur for the small N values, but go away as N
increases.

Now we move on to the case �=�. It is not difficult to
see that for any inherent structure, a link can be formed by
flipping any single one of the elementary droplets. However,
it is not always possible to flip more than that, because as
was mentioned before, there can arise insurmountable barri-
ers to damage spreading; as a consequence, the number of
elementary droplets that can be jointly flipped is small. These
properties suggest that the degree properties of the ISN are
not very sensitive to � when � grows as we now confirm.

Consider first the scaling of the mean degree 	q
. We see
from the inset of Fig. 6 that indeed this quantity scales lin-
early with N, just as in the case of � finite. More generally,
the slope of the mean degree grows with � but has a finite
limit as �→�.

Second, consider the distribution of the degree q. As
shown in Fig. 6, there is a broad tail at large q. It turns out
that the tail comes mostly from links attached to low energy
states: the collective flipping of multiple elementary droplets
is more likely in that situation. A subtle correlation, reflecting
the shape of the energy profile, amplifies that effect: clusters
of multiple elementary droplets can flip more easily when
each of their constituents can flip separately.
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FIG. 4. Distribution of the Hamming distance dH between
linked IS in the one-dimensional lattice for � /J=2 and for N rang-
ing from 10 to 30. The average dH is almost N independent and
equals 2.75�2�. Inset: same but for �=�, the average dH being now
3.20�4�.
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FIG. 5. Scaled distribution of degree in the ISN for the one-
dimensional lattice �� /J=2� for N=16 �circles�, 22 �squares�, 28
�triangles� in a semilogarithmic plot. The parabola correspond to
Gaussian distributions. Inset: The mean degree versus N, along with
the corresponding linear fit 	q
=a+bN, where a=0.09�3� and b
=0.284�1�.
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It is very significant that the tail of the distribution shrinks
as N increases; in particular, the effective slope in the tail
gets steeper with N. Actually, it is not surprising that the
deviations from Gaussian behavior are larger here than when
� is finite: the Hamming distances dH have a broader distri-
bution �cf. Fig. 4�. The tails in Fig. 6 arise at frequencies of
10−3 or less, and at such frequencies one has dH close to 10:
to see a clear Gaussian behavior, it should be necessary to go
to N�10, and so N=30 can be argued to be insufficient.
Given both this theoretical argument and the numerical evi-
dence, there is some credence to the claim that the distribu-
tion becomes Gaussian at large N.

D. Connected components of the ISN

When � /J is finite, there may be some bonds whose state
�satisfied or unsatisfied� cannot be changed during the steep-
est descent dynamics. Because of this, the ISN will typically
consist of disconnected pieces, where in each connected
component, the spins on such bonds will have fixed values.

The existence of such bonds is easily demonstrated: just
consider a bond inside an elementary droplet; if its height is
more than � above the height of its neighbors, it must al-
ways be satisfied and thus cannot be changed. A consequence
of this is that the spins inside that elementary droplet are
frozen over each separate connected component of the ISN.

Let us classify each elementary droplet as being of the
“frozen” type if its orientation cannot be changed when re-
specting the bound on energies. If elementary droplets did
not touch, then the frozen nature of an elementary droplet
would not depend on the state of its neighbors; in practice
there is a small dependence, so for instance, an elementary
droplet will be frozen in the ground state but not in some of
the excited states. This dependence on context is weak so it is
a good approximation to consider that elementary droplets
are frozen or not, independently of their surroundings. An
elementary droplet that is not frozen will be called “active.”

Within such an “independent elementary droplets” ap-
proximation, much can be said about the topology of the
ISN. If there are a total of M elementary droplets and �1
− f�M of these are frozen, then there will be exactly 2�1−f�M

components to the ISN. �In addition, each of these compo-
nents will be isomorphic.� In Fig. 7 we confirm this expo-
nential growth in N of the number of components of the ISN.

Note that the number of frozen elementary droplets is
extensive in N, but decreases rapidly as � grows. When �
→�, all elementary droplets are active and the ISN is con-
nected. Indeed, to go from any IS to another, one can simply
sequentially turn over each elementary droplet for which
these IS differ: a necessary and sufficient condition to have a
connected ISN is for all elementary droplets to be active.

Keeping within this approximation, we can further char-
acterize the structure of each component of the ISN. Note
that each of the fM active elementary droplets can be sepa-
rately flipped, i.e., there is one link connecting any IS to the
one produced by flipping any elementary droplet; the degree
of each IS will thus be at least equal to the number of active
elementary droplets. If these were the only links, each com-
ponent of the ISN would be a hypercube of dimension fM.
But often, two inherent structures X and Y will differ by
several consecutive elementary droplets, so each component
of the ISN should be thought of as a hypercube to which
additional links have been added.

A structuring of these additional links arises because the
�steepest descent� dynamics occurring inside a region of ac-
tive elementary droplets delimited by two frozen elementary
droplets is independent of what happens outside of this re-
gion. Thus to construct a whole connected component of the
ISN, we can first restrict ourselves to links coming from
multiple elementary droplets lying within a single such de-
limited region.

If there are p elementary droplets in a delimited region,
then we focus on a reduced hypercube of dimension p, the
vertices of which are labeled by the orientation of each of the
region’s elementary droplets. The vertices of this hypercube
are then connected by links if and only if a corresponding
transition link exists �this can be determined by finding tran-
sition states, working solely within the delimited region�. In
addition to the links between nearest neighbors on the hyper-
cube, there can be longer range links associated with mul-
tiple elementary droplets. These connections give rise to tri-
angles and other subgraphs that are absent in the simple
picture allowing for independent two-level systems only.
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Now to get a global description of the ISN, we use the
fact that each IS of the full one-dimensional lattice is speci-
fied by its state in each of the delimited regions. If there are
multiple such regions, then a link between two ISs occurs if
and only if they are identical in all but one region and for
that region a link exists as just constructed on the reduced
hypercube.

IV. GENERALIZING TO A FRAMEWORK
BASED ON DROPLETS

A. Locality and correlation volume

Elementary droplets played a central role when interpret-
ing the ISN of the one-dimensional spin glass. In this section
we show that some of the associated concepts form a natural
framework for understanding what can happen in more com-
plex models. We expose here this more general picture as
well as its predictions, and then shall confront these with the
actual properties of spin glasses on random graphs.

Consider � given, N large, and a frontier link xy; of the
steepest descent paths from configurations x and y, at least
one is expected to be composed of O�� /J� steps or less
because the spin flip at each step generically leads to an O�J�
decrease of the energy. �In Fig. 1, it is the path from y to Y
that is of this type since it is the one satisfying the � bound.�
A priori, it is possible that the other path is much longer
since no bound on the energy applies there, but such a situ-
ation is likely to be rare for typical inherent structures. For
the sake of simplicity, we shall neglect this effect and con-
sider that both paths have O�� /J� steps or less. Since the
number of states accessible grows fast with energy, most of
the frontier links should be close to the bound, and so one
can expect to be dominated by situations in which the num-
ber of steps is indeed O�� /J�, rather than a much smaller
number.

Given that each steepest descent path should have O�� /J�
spin flips, linked inherent structures will differ typically by
O�� /J� spin flips. Furthermore, the spins of opposite sign in
those two IS cannot be too “far” away from one another on
the graph G. The reason is causality: when flipping one spin
�to go from x to y�, the subsequent steepest descent path can
undergo modifications but only by propagation to nearest
neighbor spins at each step. Thus for a path of � steps, only
spins within a distance � on G can be affected by choosing
the starting configuration y instead of x. This phenomenon is
in direct correspondence with the standard damage spreading
dynamics �22�. In the limit of a very large graph G �that is, in
the limit N→��, for � /J fixed, one thus expects the ISN to
have links between X’s and Y’s differing in the orientation of
just a few spins; furthermore these clusters should be local-
ized on G. These properties were found to hold very nicely in
the one-dimensional case, though there in addition the clus-
ters were connected. In general there is no reason to have
only connected clusters, except in the one-dimensional case
where the topology is very special.

To make this picture a bit more quantitative, consider the
Hamming distance dH between two linked inherent structures
X and Y. Define the mean of dH as follows:

vc � 	dH
 , �7�

where the average is over linked IS and over samples. One
expects vc to grow with � /J; the larger � /J is, the further
the damage spreading from frontier links can propagate. In
effect, vc describes a kind of correlation volume. We saw in
the one-dimensional model that vc saturates as �→� be-
cause of the presence of insurmountable barriers to damage
spreading in that case; again this phenomenon is specific to
the topology of the one-dimensional lattice. On the contrary,
we shall see that vc diverges when � becomes unbounded in
the random graph case.

B. Dilute droplets and scaling laws

Let � /J be small and take the limit of large N. For each
link of the ISN, we argued that the difference between the
two corresponding nodes X and Y should come from a small
localized region of spins. Let us call these “droplets” whether
or not X and Y can be connected by a barrier less than the
current � /J. For simplicity, assume that these droplets are
independent; then if M is the number of droplets in a sample,
the number of inherent structures is 2M. Some of these drop-
lets will be “active” �have a transition state satisfying the �
bound�, others not. The fraction f�� /J� of active droplets
grows with � /J. We then see that in this picture of indepen-
dent droplets, the ISN consists of a number of components
that grows exponentially in N, just as we found for the one-
dimensional model �cf. Fig. 7�. In fact, taking the droplet
framework literally, the ISN has 2�1−f�M components, each of
which is a hypercube of dimension fM; furthermore, the de-
gree of each node in this ISN is simply fM.

M is expected to be extensive �at least for the kinds of
graphs we consider�, and to have a Gaussian distribution
when considering samples with different Jij. As a conse-
quence, the number of inherent structures should have a log-
normal distribution, a property that seems to hold without
restriction �16�. But our droplet framework also predicts that
the degree of nodes in the network should have a Gaussian
distribution with a mean scaling linearly with N; the coeffi-
cient of this linear scaling is expected to grow monotonically
with � /J.

Of course, these predictions are based on the locality ar-
gument previously given. As � /J grows, more droplets arise,
their vc also grows, and so the independent �dilute� approxi-
mation may break down. Although no such breakdown oc-
curs for the one-dimensional model, we shall see that in the
case of k=4 regular random graphs, the system’s behavior
changes dramatically when �→�.

V. RANDOM GRAPH CASE

A. Qualitative aspects

We now move on to the case where the spins lie on sites
belonging to a connected k-regular random graph, one of the
standard frameworks for mean-field studies of spin glasses.
The connectivity property is desirable because we are limited
to rather few spins; it would be unreasonable to allow our
small systems to be made up of even smaller independent
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subsystems. In this class of graphs, each of the N sites is
connected to exactly k other sites, with an associated Jij, the
Hamiltonian being given by Eq. �1�. We have chosen k=4 to
have a value neither too small nor too large. Indeed, k=3
random graphs have a non-negligible probability of being
disconnected for the N values we use �the connectivity can
be enforced, but it is simpler to set k=4; with this choice
randomly generated graphs are in practice never discon-
nected�. On the other hand, as k grows, the consequences of
sparseness set in at larger and larger N values, and since we
are limited to N	30, it is preferable to avoid this.

These graphs have two types of quenched disorder, com-
ing from the couplings �Jij� and from the “geometry” �which
sites are coupled to which�. In comparison to the one-
dimensional case, there are several very important differ-
ences associated with the graph’s more complex topology.
First, one cannot gauge away the signs of the Jij to make all
couplings positive: the system is inherently frustrated. Sec-
ond, one cannot introduce a local structure that will auto-
matically block damage spreading; any obstacle can be “by-
passed,” a feature that �at least for nearest-neighbor
interactions� has no analog in one dimension. Third, elemen-
tary droplets cannot be defined a priori, and no simple char-
acterization of inherent structures allows one to enumerate
them efficiently. The reason is that droplets are context sen-
sitive. Specifically, this means that if one takes the cluster of
spins defining a droplet between inherent structures X and Y,
flipping that same cluster in another inherent structure Z will
not in general lead to a local minimum of the Hamiltonian.

Because droplets are context sensitive, the number of in-
herent structures NIS will generally not be a power of 2.
Nevertheless, one expects there will be many local excita-
tions and this should be enough to make NIS have a log-
normal distribution. This indeed seems to be the case as has
been found before, in particular, in �16�.

B. Droplet sizes

Let us now focus on the Hamming distance dH between
linked inherent structures. To begin, assume that � is fixed.
In the one-dimensional case, droplets were localized and
connected, with dH having a distribution falling off fast at
large values and almost no N dependence. We show in Fig. 8
what happens in the random graph case. At the top of that
figure we show the distribution when � /J=2, for N values
ranging from 10 to 30. One sees that the distribution of dH
still falls off relatively fast, perhaps faster than an exponen-
tial, just as in the one-dimensional case. However, there is
now a trend in N, the droplets typically growing when N
increases. In the bottom of Fig. 8 we show vc�	dH
 as a
function of N. For � /J=2 the data may saturate at large N,
but are also compatible with a logarithmic growth. �The
curve on the left is vc=1.57�5�+0.91�2�ln�N�.� Since this
growth could be just a finite size effect, we also show a
similar plot but at a smaller value of � /J, viz., � /J=0.5.
Here the saturation seems more likely: the logarithmic fit is
quite poor while a fit to the form a+b /N is very good. Note
that random graphs naturally produce 1/N effects because
the probability that a given site belongs to a small loop �say

a triangle� is O�1/N�. We conclude that the observed growth
is plausibly a finite-size effect although a growth continuing
indefinitely at higher N cannot be completely excluded.

One might guess that the divergence of vc with N depends
on the value of �; however, our claim is that on the contrary
all finite � values lead to the same behavior: either vc always
diverges when N→� or it never does. The reasoning is as
follows. For specificity, take the situation illustrated in Fig. 1
where x satisfies the bound with respect to Y. The configu-
rations x and y differ from Y by a finite number of spin flips.
Let us assume that vc diverges so there is a nonzero prob-
ability for the damage spreading front to go arbitrarily far. In
that “far away” regime, the front advances in a region of the
graph G where the spins are far from the few spins that are
flipped to go from Y to x. This “invasion process” will ini-
tiate with a probability that grows with �, but because the Jij
are continuous and the associated local field on each spin has
a finite density at 0, this initiation happens with a strictly
positive probability at all �. The bound � just plays the role
of limiting the initiation probability, but does not affect the
ability of the invasion process to spread arbitrarily far. Thus
if vc diverges for one value of �, then it must diverge for all
other finite values of �. �It may be possible to use the tech-
niques developed in Ref. �25� to compute properties of this
invasion process, at least on certain kinds of graphs.� To
summarize, it seems we have just the following two alterna-
tive possibilities: �i� vc diverges with N, possibly logarithmi-
cally; �ii� vc saturates as N→�. In both cases the behavior
holds for all finite values of �.

Coming back to our data, we see that in practice damage
spreading remains relatively localized. Note that droplets
need not be connected and sometimes indeed are not, but that
is rather exceptional. Comparing these results to the case of
the one-dimensional spin glass, we see that the droplets are
definitely larger here. Probably this has two sources: first, no
single obstacle can stop damage spreading, and second, the
high level of frustration in the present model should go hand
in hand with enhanced fragility to perturbations. Because of
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these larger droplets, one has to go to larger N to hope to see
the large N scaling set in. In particular, for sure one needs the
total number of spins N to be much larger than the mean
droplet volume vc. However, it might be argued that it is the
diameter of the graph that should be much larger than the
diameter of the droplets; since the graph’s diameter grows as
ln�N�, this would imply going to much larger values of N to
see the scaling set in convincingly. Such large sizes are way
beyond the reach of current techniques. Note that the near
logarithmic growth of vc with N seen at �=2.0 may be re-
lated to the fact that the graph’s diameter grows as ln�N�, the
scale where loops set in.

Finally, consider the case �=�. In the one-dimensional
model, insurmountable barriers prevented vc from growing
much, but here there is no reason for vc not to diverge as
�→�. Our data for k=4 random graphs are unambiguous
here: we observe a very clean linear growth of vc with N, i.e.,
damage spreading can invade the whole system. Thus in ran-
dom graph case �in contrast to what happens in one dimen-
sion�, the droplet framework will be of no use for interpret-
ing properties of the ISN when �=�: not only are droplets
strongly correlated there, they are also delocalized.

C. Degree properties at �=�

Let us first investigate the case �=�. As mentioned be-
fore, when energies are unbounded, locality no longer holds
and so the droplet framework is misleading.

Consider a configuration x of high energy, which under
steepest descent goes to the inherent structure X. At high
energies, damage spreading is expected to be able to propa-
gate far away, so that X should be linked to many Y whose
Hamming distance is proportional to N. Since there are no
insurmountable barriers to damage spreading, the spreading
can be rather sensitive to details of the configuration x; this
picture suggests that each IS is linked to many others on the
ISN, presumably an exponentially large number with N. This
is borne out by our simulations. If q is the number of links
attached to X, we find that 	q
 grows exponentially with N as
illustrated in the inset of Fig. 9; our best fit gives

	q
 = ea+bN with a = 0.28�8�, b = 0.156�4� . �8�

We know that NIS, the number of inherent structures, is
exponentially large with N, and here we find that 	q
 is also,
but nevertheless the mean degree of the ISN is much smaller
than the maximum possible value. Comparing with the data
of Ref. �16� one finds that

	q
 
 	NIS
�, �9�

where the exponent ��0.72 is significantly less than unity.
We also mentioned that the number of IS has a log-normal

distribution; the argument behind that can plausibly be ap-
plied to q itself. Thus in Fig. 9 we compare the empirical
distribution of q to a log-normal one adjusted to have the
same mean and variance. The data indicate that the distribu-
tion is steeper than log-normal, but also less steep than a
Gaussian. We also find that this distribution is relatively in-
sensitive to the N values studied. But this may be misleading:
if we consider the variance of ln q, it increases roughly like
	ln q
, though the finite-size effects are sizable. If one ex-
trapolates the behavior of the largest system sizes accessible
to us, namely, 20	N	30, one finds that the variance of the
quantity ln q / 	ln q
, namely, var�ln q� / 	ln q
2 can be fit to
the form

var�ln q�
	ln q
2 �

a

N
�1 + b/N + . . . � , �10�

with b�−10. This coefficient is large, making the extrapo-
lation dangerous, but if it is correct, the distribution at large
N is log-normal, so the bulk of the scaled degree distribution
shown in Fig. 9 will shrink, but only for N�10.

D. Degree properties at � finite

Now we come to the case of � finite, where we found
droplets to be typically localized, and so the droplet frame-
work may be expected to be a useful guide. The first predic-
tion of the droplet framework is that 	q
 grows linearly with
N. Our data are in good agreement with this scaling, and for
illustrative purposes we display in the inset of Fig. 10 the
linear growth of 	q
 with N when � /J=2; our best linear fit
leads to
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	q
 = a + bN with a = − 1.40�6�, b = 0.470�3� .

�11�

The second prediction of the droplet framework is that q
has a Gaussian limiting distribution. The main part of Fig. 10
suggests on the contrary that the distribution has a power law
tail at large q. There is no indication that the fat tail observed
is a finite N effect that goes away as N increases: a zoom on
the tails for different N shows this, as is displayed in Fig. 11.
At each N the tail is compatible with a pure power law; the
associated exponent tends to less negative values with in-
creasing N. We have performed a �tentative� 1/N extrapola-
tion on the power and this works quite well �see inset�, lead-
ing to the estimation of an algebraic decay with exponent �3
in the large N limit. All of these properties hold for the dif-
ferent values of � we have investigated; in particular, the
exponents of the tails are insensitive to �.

The behavior of the distribution is striking, because in the
droplet framework the quantity q / 	q
 is expected to become
peaked whereas we see instead a stable distribution with a fat
tail. If this is indeed indicative of the large N behavior, then
q is not self-averaging; such a situation is surprising and
requires strong correlations, and presumably a diverging vc.
Distributions with power law tails are often called “scale-
free,” and many natural and artificial systems have networks
with this property. Growth rules have been proposed to ex-
plain the relative ubiquity of scale-free networks �26,27�, but
our ISN is not the result of a growth process; thus other
explanations are called for.

Just as we did for �=�, one may ask whether there is any
trend that would suggest a narrowing of the distribution with
increasing N. We have thus examined the variance of q / 	q
,
namely, var�q� / 	q
2. It is possible to fit it to the form

var�q�
	q
2 �

a�

N
�1 + b�/N + ¯ � , �12�

with b��−10. Again this correction term is large and com-
pensates to a large extent the trend imposed by the first term;
it also shows that a putative narrowing of the distribution can
only set in for N�10. However, in such a picture, one would

still expect the amplitude of the tails in Fig. 10 to diminish
with N, while a close observation of that figure shows that
they grow slightly.

To conclude, we can interpret the data either as giving
some credence to the droplet claim whereby a central limit
behavior will transpire but only for much larger N than we
can tackle, or, more likely, as giving evidence for a limiting
distribution for q / 	q
 at large N with power law tails. In this
last scenario, the system is “critical” for all finite �, suggest-
ing that droplets are correlated on all scales. Since no param-
eter has been fine tuned, the criticality is self-organized �28�.

E. Connected components of the ISN

Just as in the one-dimensional case, it is of interest to
understand the connectivity properties of the ISN. Since in
the random graph case, damage spreading is less subject to
bottlenecks, one expects the ISN to have fewer components
than in the one-dimensional case. The greater fragility of
configurations to perturbations also suggests this. Not sur-
prisingly, our simulations confirm these expectations. For in-
stance, when � /J=2, the one-dimensional case typically had
multiple components, whereas in the random graph case usu-
ally there is just one component. To obtain more compo-
nents, it is necessary to go to smaller values of � /J. In Fig.
12 we show how the mean number of components grows
with N for � /J=0.5: we find again an exponential increase,
the best fit being exp�0.40�3�+0.104�2�N�.

This qualitative behavior can be understood as follows.
Even though there are no “topological” barriers in the spin-
glass model defined on random graphs, the set of bonds
whose couplings Jij have particularly large magnitudes can
disconnect the ISN. Indeed, when � /J is too small to allow
for unsatisfying a bond, then that bond is frozen in an entire
connected component of the ISN. The number of these fro-
zen bonds grows extensively with N, and so the number of
components is expected to grow exponentially with N. As
� /J grows, the number of frozen bonds drops very fast, so
for relatively modest values of � �given our small values of
N� the ISN has just a single connected component.

VI. DISCUSSION AND CONCLUSION

For studying the cooperative behavior of complex sys-
tems, it is common practice to refer to inherent structures
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�1,11,29,30�. Here we took model systems based on spin-
glass Hamiltonians and determined the degree and connec-
tivity properties of the ISN, the network which interconnects
the inherent structures. That network architecture is impor-
tant for the system’s dynamical behavior.

This kind of study has been pioneered in Refs. �12,19� in
a context where the configuration space is continuous. In the
models we studied here, this space �a Boolean hypercube� is
discrete. Thus our first task has been to introduce an appro-
priate definition of the transition states, the passes between
two neighboring basins of attraction of two distinct inherent
structures �see Fig. 1�. We found it useful to include in this
definition a cutoff �: the energy of a transition state cannot
be more than � above both of its inherent structures. Of
course, when � /J is very small, the ISN is very weakly
connected and of little interest. We have found, however, that
for � /J of order unity one observes in addition to the well
known asymptotics for the number of inherent structures

	NIS
 
 e�N, �13�

the following characteristic scaling behavior of the average
number of transition states NT:

	NT
 
 Ne�N, �14�

as would hold in a system regarded as a collection of equiva-
lent and independent subsystems �5,18,31�. �Notice that this
implies that the average degree of the ISN is linear in N.�
The scaling law �14� is likely to hold in the thermodynamic
limit, for any finite value of � /J, but we have no proof that
it is indeed so. In any case, Eq. �14� suggests to interpret the
data in terms of local excitations. This is the essence of our
approach, our “droplets” are the local excitations of the sys-
tem.

The droplet framework in its simplest version emerges
naturally when the spins live on a one-dimensional lattice. In
this case, for every given �Jij�, the enumeration of inherent
structures is particularly simple: the lattice can be unambigu-
ously divided into nonoverlapping intervals and in each in-
terval the spins are either all +1 or all −1 �in an appropriate
gauge�. Thus the inherent structure network is essentially
based on independent two-level systems, the elementary
“droplets” formed of connected clusters of spins.

Although the inherent structures can easily be visualized
and counted for the one-dimensional spin glass, the inherent
network is nevertheless nontrivial since it is not obvious at
all which metastable states are connected via transition
states. In the simplest case just the spins of an elementary
droplet are flipped. A flip of several elementary droplets is
also possible, under certain conditions: a necessary one is
that these droplets form an uninterrupted sequence. These
elementary droplets are de facto correlated, reflecting the
shape of the “energy profile” of bonds: it turns out that the
likelihood of a flip of a “compound” droplet made up of n
elementary ones is enhanced when flips of spins in “smaller”
droplets made of m�n elementary ones are likely. This ef-
fect produces a tail in the degree distribution. However, the
topology of our one-dimensional lattice implies that the cor-
relations effectively involve on average only a finite number
of droplets. Consequently, Eq. �14� holds for all �. Further-

more, the degree of an ISN node is a sum of a number of
independent random variables and the degree distribution
tends to a Gaussian as N→�.

The droplet framework being an excellent guide for the
one-dimensional spin glass, it is natural to extend it to the
more complicated mean-field spin glass defined on random
graphs, although in this case the droplets are not defined
without reference to the underlying inherent structures. If the
one-dimensional lattice is represented by a ring, then a
4-regular graph can be regarded as a ring with multiple short-
cuts; this changes the way droplets can interact and their
locality is no longer evident. Furthermore, the properties of
the model depend qualitatively on whether � is finite or not,
and in practice on the magnitude of �.

When � /J�1, the scaling property, Eq. �14�, no longer
holds and the correlation volume �or mean droplet size� be-
comes comparable to the whole system. As a consequence,
the droplet framework is of no use. For this strongly corre-
lated system, instead of Eq. �14�, we find that the mean de-
gree of the ISN grows exponentially with N. Finally, one can
argue that the degree distribution should be log-normal and
this is relatively compatible with our data.

On the contrary, when � /J is of order unity, the picture is
closer to that of the droplet framework except that the finite-
size corrections are large. In particular, most properties we
find can again be interpreted in the droplet framework, with
one notable exception: for � /J of order unity, the degree
distribution has a scale-free tail, P�q�
q− for large q. More-
over, and this is particularly significant, the exponent  de-
creases with increasing N. A tentative �and bold� extrapola-
tion suggests that it might be close to 3 in the
thermodynamic limit. We did not succeed to find a plausible
explanation of this phenomenon. Clearly random graphs as
used in mean-field spin glasses have strongly correlated
droplets, allowing for collective flipping of spin clusters in
the range for N accessible to our study. If these correlations
are so strong as to maintain a fat tail distribution in the ther-
modynamic limit, then clearly the droplet framework is in-
adequate and instead some self-organizing criticality �28�
principle is at work.

Our approach differs from that used in the literature for
certain atomic clusters �12,19�, where the ISN structure has
been interpreted using geometric arguments. We did not fol-
low that avenue for several reasons. First, the idea that the
scale-free tail of the degree distribution might reflect the
properties of a dense packing of basins does not work for the
system studied here: if it were true one would a fortiori
observe this feature at �=�, when all neighbor basins are
connected, but this does not happen. Second, the idea that the
partition of the configuration space into attraction basins ex-
hibits a fractal structure is untenable in our context: in our
configuration space, i.e., on the Boolean cube, the number of
points located at Hamming distance r from a given vertex is
� N

r
�, which for r�N equals Nr /r!. This shows that the space

has a negative curvature; most points of a basin are located
near its boundary. This is like in a symmetric Cayley tree and
explains why a basin can have so huge a number of neigh-
bors: the boundary itself is huge. Now, self-similarity in a
curved space is a somewhat ill-defined concept, because the
curvature sets a distance scale. Finally, we measured the ba-
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sin size distribution; in contrast to the systems studied in
Refs. �12,19�, it is not scale-free.

In spite of a different way of looking at our systems, we
recover several of the geometric observations made in Refs.
�12,19�. The hubs of the ISN are due to low energy states; in
fact often the ground state for the N values we can tackle in
this work. And there is a positive correlation between the
degree of an ISN node and the size of the corresponding
basin.

When considering the connectivity properties of ISN, we
showed that for finite � the number of components grew
exponentially with N. We argued that this was necessarily the
case when values of the Jij could be larger than � since the
associated bonds have to remain satisfied throughout the
whole steepest descent from the transition states. Each such
bond breaks the different components of the ISN into two
further pieces that are of nearly identical size. As a conse-
quence, at any fixed �, the largest component of the ISN
represents an exponentially small fraction of the whole as
N→�: because of this there is no percolation transition. Our
model can thus be contrasted with the continuous energy
landscape model of Weinrib and Halperin �32�: there, by in-
creasing the barrier value in the thermodynamic limit, a true
percolation transition is found.

As already stated, we have no explanation of the appear-
ance of the scale-free tail in the degree distribution; it re-
mains a bit mysterious. The standard deexcitation of a meta-
stable state occurs via a cascade of small steps connecting

energetically close levels �e.g., in quantum mechanics this is
due to the direct relation between transition probabilities and
wave function overlaps�. In a complex system like the one
studied here there is a significant probability that many ex-
cited states are separated by a small energy barrier from one
low energy state, which then appears to be a hub of incoming
links on the ISN. Manifestly, this is not an uncommon fea-
ture, since it has been observed in a set of very different
systems. One can wonder what use nature can make of this
curious geometry. A clarification of this issue remains an
interesting challenge.
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